Simplicial Properties of the Set of Planar Binary Trees
نویسنده
چکیده
Planar binary trees appear as the the main ingredient of a new homology theory related to dialgebras, cf.(J.-L. Loday, C.R. Acad. Sci. Paris 321 (1995), 141–146.) Here I investigate the simplicial properties of the set of these trees, which are independent of the dialgebra context though they are reflected in the dialgebra homology. The set of planar binary trees is endowed with a natural (almost) simplicial structure which gives rise to a chain complex. The main new idea consists in decomposing the set of trees into classes, by exploiting the orientation of their leaves. (This trick has subsequently found an application in quantum electrodynamics, c.f. (C. Brouder, “On the Trees of Quantum Fields,” Eur. Phys. J. C12, 535–549 (2000).) This decomposition yields a chain bicomplex whose total chain complex is that of binary trees. The main theorem of the paper concerns a further decomposition of this bicomplex. Each vertical complex is the direct sum of subcomplexes which are in bijection with the planar binary trees. This decomposition is used in the computation of dialgebra homology as a derived functor, cf. (A. Frabetti, “Dialgebra (co) Homology with Coefficients,” Springer L.N.M., to appear).
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملProfile and Height of Random Binary Search Trees
The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.
متن کاملDialgebra (co)homology with Coeecients
Dialgebras are a generalization of associative algebras which gives rise to Leibniz algebras instead of Lie algebras. In this paper we deene the dialgebra (co)homology with coeecients, recovering, for constant coeecients, the natural bar homology of dialgebras introduced by J.-L. Loday in L6] and denoted by HY. We show that the homology HY has the main expected properties: it is a derived funct...
متن کاملOrder Structure on the Algebra of Permutations and of Planar Binary Trees
Let Xn be either the symmetric group on n letters, the set of planar binary n-trees or the set of vertices of the (n − 1)-dimensional cube. We show that, in each case, the graded associative product on
متن کاملA New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity
Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997